AMPA, kainate, and quisqualate activate a common receptor-channel complex on embryonic chick motoneurons.

نویسندگان

  • C F Zorumski
  • J Yang
چکیده

The actions of the putative quisqualate-selective agonist DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) were examined in identified embryonic chick motoneurons using gigaseal recording techniques and compared with properties of the selective non-NMDA excitatory amino acid agonists kainate and quisqualate. Pressure application of AMPA induces an inward going current when neurons are voltage-clamped at negative membrane potentials. The current-voltage relationship for this response is linear with reversal near 0 mV. Over the range of 1 microM-10 mM, the AMPA-induced current is dose-dependent with an ED50 of 40 microM. AMPA currents are insensitive to the selective NMDA receptor antagonist, 2-amino-5-phosphonovalerate, and the putative quisqualate selective blocker, glutamate diethyl ester, but are partially inhibited by kynurenic acid. In competition experiments, applications of saturating concentrations of AMPA and either kainate or quisqualate produce responses intermediate between the response to either agonist alone, indicating commonality in the mechanism of these agents. Applications of AMPA with the NMDA-selective agonist aspartate give an additive response. Analysis of current fluctuations indicates that AMPA, quisqualate, and kainate gate a channel with a primary conductance near 20 pS. Differences in maximal macroscopic current evoked by saturating concentrations of AMPA, kainate, and quisqualate cannot be explained by differences in mean channel open time as the most efficacious agonist, kainate, has the shortest channel open time (AMPA = 5.9 +/- 0.4 msec, kainate = 2.7 +/- 0.1 msec, quisqualate = 5.0 +/- 0.5 msec). Rather, kainate induces a greater frequency of channel opening. This finding contrasts with results obtained at the nicotinic ACh receptor, where the most efficacious agonists have the longest mean channel open time. Our results suggest that AMPA acts at the same receptor-channel complex as kainate and quisqualate on chick motoneurons and support the hypothesis that only 2 classes of excitatory amino acid receptor complexes exist in this preparation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developmental characteristics of AMPA receptors in chick lumbar motoneurons.

Ca2+ fluxes through ionotropic glutamate receptors regulate a variety of developmental processes, including neurite outgrowth and naturally occurring cell death. In the CNS, NMDA receptors were originally thought to be the sole source of Ca2+ influx through glutamate receptors; however, AMPA receptors also allow a significant influx of Ca2+ ions. The Ca2+ permeability of AMPA receptors is regul...

متن کامل

Activation and Desensitization Mechanism of AMPA Receptor-TARP Complex by Cryo-EM.

AMPA receptors mediate fast excitatory neurotransmission in the mammalian brain and transduce the binding of presynaptically released glutamate to the opening of a transmembrane cation channel. Within the postsynaptic density, however, AMPA receptors coassemble with transmembrane AMPA receptor regulatory proteins (TARPs), yielding a receptor complex with altered gating kinetics, pharmacology, a...

متن کامل

Contribution of Ca(2+)-permeable AMPA/KA receptors to glutamate-induced Ca(2+) rise in embryonic lumbar motoneurons in situ.

Intracellular Ca(2+) ([Ca(2+)](i)) was fluorometrically measured with fura-2 in lumbar motoneurons of acutely isolated spinal cord slices from embryonic rats. In ester-loaded cells, bath-applied glutamate (3 microM to 1 mM) evoked a [Ca(2+)](i) increase by up to 250 nM that was abolished by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) plus 2-amino-5-phosphonovalerate (APV). CNQX or APV alone red...

متن کامل

Non-NMDA receptor-mediated neurotoxicity in cortical culture.

The neurotoxicity of 3 non-NMDA glutamate receptor agonists--kainate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA), and quisqualate--was investigated quantitatively in dissociated murine cortical cultures. Five minute exposure to 500 microM kainate, but not AMPA, produced widespread acute neuronal swelling. Kainate-induced swelling was resistant to 2-amino-5-phosphonovalerate (A...

متن کامل

N-methyl-D-aspartate activates different channels than do kainate and quisqualate.

In the mammalian central nervous system, the excitatory amino acid transmitter L-glutamate activates three pharmacologically distinguishable receptors, the N-methyl-D-aspartate (NMDA), kainate, and quisqualate receptors. The present paper addresses the issue of whether these three receptors operate independent channels or whether they share channels that may have several conductance substates. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 8 11  شماره 

صفحات  -

تاریخ انتشار 1988